Dimensions: W60 x D60 x H60 cm
Net Weight: 400 grams
Main Material: Knitted Mesh | Polyester
Mesh Size: 96 x 26 | 680 µm aperture
Clear Panel: Front, Back
Mesh Panel: Right, Left
Opening: 1 x Front Sleeve, 1 x Front Zipper

$63.00 ~ $70.00 USD

   In Stock: 216    

12-Pack Value Pack
available: 18 packs  
 qty.
$756.00 USD ($63.00 USD ea.)  SAVE 10% !
 
1-Pack Single Pack
available: 216 packs  
 qty.
$70.00 USD ($70.00 USD ea.)
 

BugDorm-2120 insect tent is one of the most popular products in BugDorm Store. Of tent-like design with a framework of lightweight fiberglass, BugDorm-2120 is a portable housing for raising or breeding insects and other small animals such as spiders and lizards.

The front and back panels of BugDorm-2120 insect rearing tent are of clear plastic for observation of insect activity; the two side panels are of Polyester netting (96 x 26 mesh) for ventilation. There are two openings in the front panel of BugDorm-2120. The zippered opening is large enough to insert small potted plants. Centered in the zippered opening is a smaller sleeve opening (18 cm diameter) for addition or removal of insects and for replacement of food material without letting insects escape.

BugDorm-2120 insect tent is constructed so that support poles are outside the enclosure. There are no places for insects to hide inside BugDorm-2120.

Reference studies using this series of products:
Hoballah et al. (2005). Planta, 222(1), 141-150.
Huang et al. (2006). Journal of Medical Entomology, 43(3), 498-504.
Chen & Leopold (2007). Journal of Economic Entomology, 100(3), 685-694.
Lefko et al. (2008). Journal of Applied Entomology, 132(3), 189-204.
Ur Rehman et al. (2009). Journal of Economic Entomology, 102(6), 2233-2240.
Murphy et al. (2010). Behavioral Ecology, 21(1), 153-160.
Moreau & Isman (2011). Pest Management Science, 67(4), 408-413.
Lytle et al. (2012). BioControl, 57(1), 61-69.
Rashed et al. (2012). Phytopathology, 102(11), 1079-1085.
Avery et al. (2013). Insects, 4(4), 694-711.
Bellamy et al. (2013). PLoS One, 8(4), e61227.
Rosa et al. (2014). Plant Disease, 98(1), 154-154.
Bosch et al. (2014). Plant Physiology, 166(1), 396-410.
Pe´rez-Hedo et al. (2015). Journal of Pest Science, 88(3), 543-554.
Gonthier et al. (2015). PeerJ, 3, e1509v1.
Briem et al. (2016). Journal of Pest Science, 89(3), 749-759.
Kil et al. (2016). Scientific Reports, 6(1), 1-10.
Rayl & Wratten (2017). PeerJ, 5, e2874v1.
Reed et al. (2017). Journal of Economic Entomology, 110(6), 2497-2503.
Pe´rez-Hedo et al. (2018). BioControl, 63(2), 203-213.
Grossman et al. (2018). Biology Letters, 14(6), 20180022.
George & Lapointe (2019). Pest Management Science, 75(1), 279-285.
Szczepaniec et al. (2019). Crop Protection, 116, 188-195.
Frewin et al. (2019). PeerJ, 6, e6278.
Mokrane et al. (2020). Scientific Reports, 10(1), 1-12.
Leach et al. (2020). Annals of Applied Biology, 176(1), 55-64.
Bouagga et al. (2020). Pest Management Science, 76(2), 561-567.
Milet-Pinheiro et al. (2021). Current Biology, 31(4), 860-868.
Nansen et al. (2021). Pest Management Science, 77(11), 5158-5169.
Cruzado‑Gutiérrez et al. (2021). Scientific Reports, 11(1), 1-12.
Veronesi et al. (2021). BioControl, 66(3), 343-353.
Van Helden et al. (2022). Journal of Economic Entomology, 1-10.
Sétamou et al. (2022). Journal of Economic Entomology, 1-8.
de Souza Pacheco et al. (2022). Scientific Reports, 12(1), 1-16.