BugDorm-2S120 Insect Rearing Cage

  • Model:BD2S120
 
Ordered Quantity 1-3 4-7 8+
 Discount -0% -5% -10%
Price per Unit $123.81 AUD $117.63 AUD $111.43 AUD

Formerly BD2120

BugDorm-2S120 insect cage is one of the most popular products in the BugDorm Store.  With a tent-like design and a framework of lightweight fiberglass, BugDorm-2S120 is a portable housing for raising or breeding insects and other small animals such as spiders and lizards.

The front and back panels of the BugDorm-2S120 insect rearing cage are of clear plastic for observation of insect activity; the two side panels are of Polyester netting (96 x 26 mesh) for ventilation.  There are two openings in the front panel of BugDorm-2S120.  The zippered opening is large enough to insert small potted plants.  Centered in the zippered opening is a smaller sleeve opening (18 cm diameter) for the addition or removal of insects and for the replacement of food material without letting insects escape.

BugDorm-2S120 insect cage is constructed so that support poles are outside the enclosure.  There are no places for insects to hide inside BugDorm-2S120.

Pack Contents
x1 Fabric Cage Body
x4 ABS Plastic Feets
x8 Fiberglass Rods (Ø4 mm, L55 cm, 2 spares)
x4 ABS Plastic Joints (2-Way)

Studies Using This Line of Products
Hoballah et al. (2005). Planta, 222(1), 141-150.
Huang et al. (2006). Journal of Medical Entomology, 43(3), 498-504.
Chen & Leopold (2007). Journal of Economic Entomology, 100(3), 685-694.
Lefko et al. (2008). Journal of Applied Entomology, 132(3), 189-204.
Ur Rehman et al. (2009). Journal of Economic Entomology, 102(6), 2233-2240.
Murphy et al. (2010). Behavioral Ecology, 21(1), 153-160.
Moreau & Isman (2011). Pest Management Science, 67(4), 408-413.
Lytle et al. (2012). BioControl, 57(1), 61-69.
Rashed et al. (2012). Phytopathology, 102(11), 1079-1085.
Avery et al. (2013). Insects, 4(4), 694-711.
Bellamy et al. (2013). PLoS One, 8(4), e61227.
Rosa et al. (2014). Plant Disease, 98(1), 154-154.
Bosch et al. (2014). Plant Physiology, 166(1), 396-410.
Pe´rez-Hedo et al. (2015). Journal of Pest Science, 88(3), 543-554.
Gonthier et al. (2015). PeerJ, 3, e1509v1.
Briem et al. (2016). Journal of Pest Science, 89(3), 749-759.
Kil et al. (2016). Scientific Reports, 6(1), 1-10.
Rayl & Wratten (2017). PeerJ, 5, e2874v1.
Reed et al. (2017). Journal of Economic Entomology, 110(6), 2497-2503.
Pe´rez-Hedo et al. (2018). BioControl, 63(2), 203-213.
Grossman et al. (2018). Biology Letters, 14(6), 20180022.
George & Lapointe (2019). Pest Management Science, 75(1), 279-285.
Szczepaniec et al. (2019). Crop Protection, 116, 188-195.
Frewin et al. (2019). PeerJ, 6, e6278.
Mokrane et al. (2020). Scientific Reports, 10(1), 1-12.
Leach et al. (2020). Annals of Applied Biology, 176(1), 55-64.
Bouagga et al. (2020). Pest Management Science, 76(2), 561-567.
Milet-Pinheiro et al. (2021). Current Biology, 31(4), 860-868.
Nansen et al. (2021). Pest Management Science, 77(11), 5158-5169.
Cruzado‑Gutiérrez et al. (2021). Scientific Reports, 11(1), 1-12.
Veronesi et al. (2021). BioControl, 66(3), 343-353.
Van Helden et al. (2022). Journal of Economic Entomology, 1-10.
Sétamou et al. (2022). Journal of Economic Entomology, 1-8.
de Souza Pacheco et al. (2022). Scientific Reports, 12(1), 1-16.
Pinilla‐Gallego et al. (2022). Ecology, e3730.
Pfitzer et al. (2022). Pest Management Science, 78(11), 4700-4708.
Power et al. (2022). PeerJ, 10, e13912.
Cedden et al. (2023). Pest Management Science, 80(5), 2282-2293.
Davidson et al. (2023). BioControl, 1-11.
Riahi et al. (2023). Phytopathology, 113(9), 1677-1685.
Stahl & Daane (2023). Journal of Economic Entomology, toad097.
Polpass et al. (2023). Functional Ecology, 37(4), 929-946.
Roh et al. (2023). Pest Management Science, 79(10), 3852-3859.
Legarrea et al. (2024). Viruses, 16(4), 587.
Nencioni et al. (2024). Journal of Pest Science, 1-11.
van Raalte et al. (2024). Plant Methods, 20(1), 75.
Debeuckelaere et al. (2024). Methods in Ecology and Evolution, 15(8), 1312-1324.
Graham et al. (2024). Journal of Economic Entomology, toae164.