BugDorm-2S120 Insect Rearing Tent

  • Model:BD2S120
 
Ordered Quantity 1-3 4-7 8+
 Discount -0% -5% -10%
Price per Unit ¥12,300 JPY ¥11,700 JPY ¥11,100 JPY

Formerly BD2120

BugDorm-2S120 insect tent is one of the most popular products in BugDorm Store. Of tent-like design with a framework of lightweight fiberglass, BugDorm-2S120 is a portable housing for raising or breeding insects and other small animals such as spiders and lizards.

The front and back panels of BugDorm-2S120 insect rearing tent are of clear plastic for observation of insect activity; the two side panels are of Polyester netting (96 x 26 mesh) for ventilation. There are two openings in the front panel of BugDorm-2S120. The zippered opening is large enough to insert small potted plants. Centered in the zippered opening is a smaller sleeve opening (18 cm diameter) for addition or removal of insects and for replacement of food material without letting insects escape.

BugDorm-2S120 insect tent is constructed so that support poles are outside the enclosure. There are no places for insects to hide inside BugDorm-2S120.

Package Contents
x1 Fabric Tent Body
x4 ABS Plastic Feets
x8 Fiberglass Rods (Ø4 mm, L55 cm, 2 spares)
x4 ABS Plastic Joints (2-Way)

Studies Using This Line of Products
Hoballah et al. (2005). Planta, 222(1), 141-150.
Huang et al. (2006). Journal of Medical Entomology, 43(3), 498-504.
Chen & Leopold (2007). Journal of Economic Entomology, 100(3), 685-694.
Lefko et al. (2008). Journal of Applied Entomology, 132(3), 189-204.
Ur Rehman et al. (2009). Journal of Economic Entomology, 102(6), 2233-2240.
Murphy et al. (2010). Behavioral Ecology, 21(1), 153-160.
Moreau & Isman (2011). Pest Management Science, 67(4), 408-413.
Lytle et al. (2012). BioControl, 57(1), 61-69.
Rashed et al. (2012). Phytopathology, 102(11), 1079-1085.
Avery et al. (2013). Insects, 4(4), 694-711.
Bellamy et al. (2013). PLoS One, 8(4), e61227.
Rosa et al. (2014). Plant Disease, 98(1), 154-154.
Bosch et al. (2014). Plant Physiology, 166(1), 396-410.
Pe´rez-Hedo et al. (2015). Journal of Pest Science, 88(3), 543-554.
Gonthier et al. (2015). PeerJ, 3, e1509v1.
Briem et al. (2016). Journal of Pest Science, 89(3), 749-759.
Kil et al. (2016). Scientific Reports, 6(1), 1-10.
Rayl & Wratten (2017). PeerJ, 5, e2874v1.
Reed et al. (2017). Journal of Economic Entomology, 110(6), 2497-2503.
Pe´rez-Hedo et al. (2018). BioControl, 63(2), 203-213.
Grossman et al. (2018). Biology Letters, 14(6), 20180022.
George & Lapointe (2019). Pest Management Science, 75(1), 279-285.
Szczepaniec et al. (2019). Crop Protection, 116, 188-195.
Frewin et al. (2019). PeerJ, 6, e6278.
Mokrane et al. (2020). Scientific Reports, 10(1), 1-12.
Leach et al. (2020). Annals of Applied Biology, 176(1), 55-64.
Bouagga et al. (2020). Pest Management Science, 76(2), 561-567.
Milet-Pinheiro et al. (2021). Current Biology, 31(4), 860-868.
Nansen et al. (2021). Pest Management Science, 77(11), 5158-5169.
Cruzado‑Gutiérrez et al. (2021). Scientific Reports, 11(1), 1-12.
Veronesi et al. (2021). BioControl, 66(3), 343-353.
Van Helden et al. (2022). Journal of Economic Entomology, 1-10.
Sétamou et al. (2022). Journal of Economic Entomology, 1-8.
de Souza Pacheco et al. (2022). Scientific Reports, 12(1), 1-16.
Pinilla‐Gallego et al. (2022). Ecology, e3730.
Pfitzer et al. (2022). Pest Management Science.
Power et al. (2022). PeerJ, 10, e13912.
Cedden et al. (2023). Pest Management Science, Early View.
Davidson et al. (2023). BioControl, 1-11.
Riahi et al. (2023). Phytopathology, 113(9), 1677-1685.
Stahl & Daane (2023). Journal of Economic Entomology, toad097.
Polpass et al. (2023). Functional Ecology, 37(4), 929-946.
Roh et al. (2023). Pest Management Science, 79(10), 3852-3859.