ez-Migration Trap II

  • Model:BT1013
 
Ordered Quantity 1-3 4-7 8+
 Discount -0% -5% -10%
Price per Unit £460.98 GBP £437.93 GBP £414.88 GBP

** New modular design, each trap component can be purchased and replaced individually in case of loss or damage.  To replace the collection head or fabric trap body, please refer to the manual “Trap Collection Head” included in the package for detailed instructions.

Some entomologists found east-facing collecting heads of classical Malaise trap filled in the morning and western-facing collecting heads filled in the afternoon.  Therefore, they compromised by having the collecting head face south.

The ez-Migration trap (aka 2-headed Malaise trap) comes with two collecting bottles: one on each end of the trap.  Insects intercepted on each side of the center panel are collected separately by the ez-Migration trap.  This not only makes trap orientation less of a concern, but it also helps identify insect flight direction.

Fast & Easy - Set Up ez-Migration Trap in Minutes!

As easy to assemble as our ez-Malaise traps, the ez-Migration trap uses a framework of shock-corded poles to allow quick installation.  Simply hook clips around provided poles.  The ez-Migration trap is nearly freestanding, requiring a minimum of two guy ropes.  This feature is lifesaving when deploying traps where there are no trees nearby.  It also allows the ez-Migration trap to be used as a short-term sampling tool since repositioning the trap is very easy.

Package Contents
x1 Fabric Trap Body
x2 Shock-corded Poles (L459 cm)
x2 Collection Heads (pre-installed)
x6 Collection Bottles (x2 pre-installed)
x10 Guy Lines
x10 Plastic X-Stakes
x8 Alloy Pin Stakes
x1 Carrying Bag

Studies Using This Line of Products
Van Achterberg (2009). Entomologische Berichten, 69(4), 129-135.
Han et al. (2012). Entomological Research, 42(4), 180-184.
Sardinas & Kremen (2014). Basic and Applied Ecology, 15(2), 161-168.
Yoshioka et al. (2015). PLoS One, 10(11), e0140957.
Souza et al. (2015). Sociobiology, 62(3), 450-456.
Gwiazdowski et al. (2015). PLoS One, 10(4), e0125635.
Geiger et al. (2016). Biodiversity Data Journal, 4, e10671.
Henter et al. (2016). Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1702), 20150340.
Skvarla & Dowling (2017). Journal of Insect Science, 17(1), 1-28.
Steinke et al. (2017). PLoS Biology, 15(4), e2001829.
Aagaard et al. (2017). Urban Ecosystems, 20(2), 353-361.
Solórzano Kraemer et al. (2018). PNAS, 115(26), 6739-6744.
Saunders & Ward (2018). PeerJ, 6, e4642.
Morinière et al. (2019). Molecular Ecology Resources, 19(4), 900-928.
deWaard et al. (2019). Genome, 62(3), 85-95.
Ronquist et al. (2020). PLoS One, 15(3), e0228561.
Swoboda-Bhattarai & Burrack (2020). Environmental Entomology, 49(2), 277-287.
de Kerdrel et al. (2020). Scientific Reports, 10(1), 1-12.
Janzen et al. (2020). Genome, 63(9), 407-436.
Basset et al. (2020). Metabarcoding and Metagenomics, 4, e58572.
Michael et al. (2021). Annals of the Entomological Society of America, 114(1), 27-47.
Tanvir Rahman et al. (2021). Ecology and Evolution, 11(9), 4656-4669.
Steinke et al. (2021). Metabarcoding and Metagenomics, 5, e59201.
Sharkey et al. (2021). ZooKeys, 1013(4), 1-665.
Chimeno et al. (2022). Insects, 13(1), 82.
Bukowski et al. (2022). PloS One, 17(4), e0267390.
Steinke et al. (2022). GigaScience, 11.
Petersen et al. (2022). Land, 12(1), 54.
Cancino-López et al. (2022). Insects, 13(7), 652.
Grimaldi & Richenbacher (2023). American Museum Novitates, 2023(3997), 1-28.
Lacoeuilhe et al. (2023). Biodiversity Data Journal, 11, e103280.
Chimeno et al. (2023). PLoS One, 18(8), e0290173.
Quicke et al. (2023). Forests, 14(10), 1991.
Sire et al. (2023). PeerJ, 11, e16022.
Iwaszkiewicz‐Eggebrecht et al. (2023). Methods in Ecology and Evolution, 14(4), 1130-1146.
Lewthwaite et al. (2024). Scientific Reports, 14(1), 390.