BugDorm-4F4590 Insect Rearing Cage

  • Model:BD4F4590
 
Ordered Quantity (1) 1-3 4-7 8+
 Discount -0% -5% -10%
Price per Unit ($256.22 CAD) $256.22 CAD $243.41 CAD $230.60 CAD

Formerly BugDorm-44590F (BD44590F)

Of the same structure as BugDorm-4 series insect cages with 96 x 26 mesh Polyester netting, this BugDorm-4F series uses very fine 150 x 150 mesh Nylon netting that effectively keeps aphids, thrips, and parasitic wasps from escaping or entering the cage.

At 93-cm tall, BugDorm-4F4590 insect cage is suitable for small potted plants.  Front and and back panels are of clear plastic for observing insect activity.  Top and two side panels are of Nylon netting (150 x 150 mesh) for ventilation.

There are three openings in the front panel of BugDorm-4F4590 insect rearing cage.  The zippered opening is large enough to insert potted plants.  On the zippered opening are two 18-cm sleeve openings to permit addition or removal of insects and replacement of food without letting insects escape.

The framework of BugDorm-4F4590 insect cage is of lightweight fiberglass and constructed outside the enclosure.  There are no places for insects to hide inside the cage.

Pack Contents
x1 Fabric Cage Body
x16 Fiberglass Rods (Ø4 mm, L45 cm)
x4 ABS Plastic Ridged Joints (2-Way)
x4 ABS Plastic Joints (3-Way)
x4 ABS Plastic Webbed Joints (3-Way)

Studies Using This Line of Products
Lee et al. (2010). Entomologia Experimentalis et Applicata, 137(2), 193-203.
Klahre et al. (2011). Current Biology, 21(9), 730-739.
Géneau et al. (2012). Basic and Applied Ecology, 13(1), 85-93.
Maria et al. (2013). Applied Entomology and Zoology, 48(3), 373-378.
Kher et al. (2014). Journal of Economic Entomology, 107(1), 410-416.
Pappas et al. (2015). PLoS One, 10(5), e0127251.
Sheehan et al. (2016). Nature Genetics, 48(2), 159-166.
Berdan et al. (2017). PLoS One, 12(5), e0177367.
Wallingford et al. (2018). Pest Management Science, 74(1), 120-125.
Pappas et al. (2018). Scientific Reports, 8(1), 1-12.
Rand et al. (2019). Journal of Economic Entomology, 112(2), 565-570.
Bedini et al. (2020). Insects, 11(3), 143.
Gautam et al. (2020). Virus Research, 286, 198069.
Rehermann et al. (2021). Pest Management Science, 78(3), 896-904.
Muskat et al. (2021). Pest Management Science, 78(3), 991-999.
Görg et al. (2021). Chemoecology, 31(1), 31-45.
Marchant et al. (2022). Phytopathology, 112(3), 720-728.
González-Pérez et al. (2022). Parasites & Vectors, 15(1), 1-11.
Sarkar et al. (2022). Pest Management Science, 79(2), 821-832.
Rohde et al. (2022). Journal of Economic Entomology, 115(6), 2116-2120.
Ganassi et al. (2023). Pest Management Science, 79(2), 719-728.
Gautam et al. (2023). Viruses, 15(2), 357.
Heilsnis et al. (2023). Journal of Economic Entomology, toad080.
Arshad et al. (2023). Journal of Economic Entomology, toad165.
Ward et al. (2023). Journal of Economic Entomology, toad236.
Pandey et al. (2024). Frontiers in Plant Science, 15, 1341781.
Harte et al. (2024). Scientific Reports, 14(1), 6029.
Ross et al. (2024). Journal of Pest Science, 1-14.
Nixon & Leskey (2024). Journal of Economic Entomology, toae106.
Cardoso et al. (2024). Journal of Pest Science, 1-13.
Graham et al. (2024). Journal of Economic Entomology, toae164.