BugDorm-4F2222 Insect Rearing Cage

  • Model:BD4F2222
 
Ordered Quantity 1-5 6-23 24+
 Discount -0% -5% -10%
Price per Unit ¥8,850 JPY ¥8,400 JPY ¥7,950 JPY

Formerly BugDorm-42222F (BD42222F)

Of the same structure as BugDorm-4 series insect cages with 96 x 26 mesh Polyester netting, this BugDorm-4F series uses very fine 150 x 150 mesh Nylon netting that effectively keeps aphids, thrips, and parasitic wasps from escaping or entering the cage.

External dimensions of BugDorm-4F2222 insect cage are only L24.5 x W24.5 x H24.5 cm, making it a perfect fit for lab selves with limited space.

BugDorm-4F2222 insect cage is very easy to assemble by simply connecting poles with splints.  The front panel of BugDorm-4F2222 insect rearing cage is of clear plastic for observing insect activity; the top and three side panels are of fine Nylon netting (150 x 150 mesh) for ventilation.  There is a 17-cm sleeve opening in the front panel for addition or removal of insects and for replacement of food material.  A thin strip is sewn across the ceiling from which to suspend objects such as feeders.

The framework of BugDorm-4F2222 insect cage is of lightweight fiberglass and constructed outside the enclosure. There are no places for insects to hide inside the cage.

Pack Contents
x1 Fabric Cage Body
x12 Fiberglass Rods (Ø4 mm, L22 cm)
x4 ABS Plastic Webbed Joints (3-Way)
x4 ABS Plastic Joints (3-Way)

Studies Using This Line of Products
Ingegno et al. (2011). Biological Control, 58(3), 174-181.
Géneau et al. (2013). Biological Control, 66(1), 16-20.
Rouchet et al. (2014). Evolution, 68(6), 1607-1616.
Renkema et al. (2015). Biological Control, 89, 1-10.
Mains et al. (2015). PLoS Neglected Tropical Diseases, 9(1), e0003406.
Kim et al. (2016). Journal of Agricultural and Food Chemistry, 64(27), 5479-5483.
Mains et al. (2016). Scientific Reports, 6(1), 1-7.
Jang et al. (2017). Pest Management Science, 73(2), 404-409.
Park et al. (2017). Molecules, 22(7), 1050.
Dennis et al. (2017). Evolution, 71(11), 2599-2617.
Shaw et al. (2018). Pest Management Science, 74(6), 1466-1471.
Hertäg et al. (2018). Functional Ecology, 32(4), 1057-1064.
Mains et al. (2019). Journal of Medical Entomology, 56(5), 1296-1303.
Foti et al. (2019). Journal of Pest Science, 92(2), 747-756.
Hafer‐Hahmann & Vorburge (2020). Ecology Letters, 23(8), 1232-1241.
Nicholas & Nordström (2020). Current Biology, 30(14), 2739-2748.
Goelen et al. (2020). Functional Ecology, 34(2), 507-520.
Krzywinska et al. (2021). Current Biology, 31(5), 1084-1091.
Kancharlapalli et al. (2021). PLoS Neglected Tropical Diseases, 15(10), e0009824.
Li et al. (2021). Nature Communications, 12(1), 1-10.
Arran et al. (2021). Scientific Reports, 11(1), 1-10.
Mastronikolos et al. (2022). Insects, 13(2), 179.
Hernández-Triana et al. (2022). Parasites & Vectors, 15(1), 1-8.
Gu et al. (2022). Environmental Microbiology, 24(4), 2119-2135.
Wang et al. (2022). Elife, 11, e81703.
Ross et al. (2023). PLoS Pathogens, 19(1), e1011117.
Kuo et al. (2023). Insect Biochemistry and Molecular Biology, 155, 103932.
Silva Martins et al. (2023). Scientific Reports, 13(1), 6281.
Smidler et al. (2023). Science Advances, 9(27), eade8903.
Hameed et al. (2023). Viruses, 15(8), 1766.
Krzywinska et al. (2023). Current Biology, 33(21), 4697-4703.
Quarrell et al. (2023). Journal of Agricultural and Food Chemistry, 71(43), 16079-16089.
Fouani et al. (2024). Scientific Reports, 14(1), 1198.
Smidler et al. (2024). Scientific Reports, 14(1), 1-11.
Anderson et al. (2024). Nature Communications, 15(1), 729.