Malaise Trap II, Townes Style

  • Model:BT1011
 
Ordered Quantity (2) 1-3 4-7 8+
 Discount -0% -5% -10%
Price per Unit (€260,76 EUR) €260,76 EUR €247,73 EUR €234,69 EUR

※Tent pegs, guy ropes, and support poles required for trap installation are NOT included in the package.  Please order trap installation kits (BT1011B), if needed.

Malaise traps are widely used in biodiversity surveys because they efficiently trap flying insects.  However, one of the main complaints about the Malaise trap is its cost, especially compared to other trapping tools.

This economical Malaise trap results from quality sewing work.  Its black Polyester no-see-um fabric (96 x 26 mesh/square inch) catches minute insects, including parasitic wasps.  Our Malaise trap's interception area (center panel) is 165 by 110 cm (5.4 ft by 3.6 ft).  If you place trays with killing agents underneath this interceptor, it also functions as a flight interception trap (FIT) or window trap, sampling specimens (i.e., some beetles) that drop or fly down after hitting an obstruction.

Each Townes-style Malaise trap comes equipped with one 500ml collection bottle.  The catch is easily removed by unscrewing the bottle from the connecting ring.

Package Contents
x1 Fabric Trap Body
x1 Collection Head (pre-installed)
x1 Collection Bottle

Studies Using This Line of Products
Chan & Yang (2007). Annals of the Entomological Society of America, 100(3), 359-365.
Van Achterberg (2009). Entomologische Berichten, 69(4), 129-135.
Sinclair et al. (2011). The Canadian Entomologist, 143(6), 629-651.
Darling (2011). HAMULI, 2(1).
Wiesenborn (2012). Florida Entomologist, 95(4), 952-960.
Alberts et al. (2013). Science of the Total Environment, 463, 42-50.
Edwards et al. (2014). Ecological Applications, 24(8), 2029-2049.
Brown et al.. (2014). American Entomologist, 60(4), 231.
Hartop et al. (2015). Zootaxa, 3941(4), 451-484.
Deharveng et al. (2015). Zoosystema, 37(1), 9-30.
Morinière et al. (2016). PLoS One, 11(5), e0155497.
Buffington & Copeland (2016). Proceedings of the Entomological Society of Washington, 118(3), 330-344.
Tunnakundacha et al. (2017). Agriculture and Natural Resources, 51(4), 319-323.
Matos-Maraví et al. (2019). PeerJ, 7, e6727.
deWaard et al. (2019). Genome, 62(3), 85-95.
Lynggaard et al. (2019). Environmental DNA, 1(4), 329-341.
Marquina et al. (2019). Molecular Ecology Resources, 19(6), 1516-1530.
Srivathsan et al. (2019). BMC biology, 17, 1-20.
Karlsson et al. (2020). Biodiversity Data Journal, 8, e56286.
Pentinsaari et al. (2020). Insects, 11(1), 46.
Hausmann et al. (2020). Ecology and Evolution, 10(9), 4009-4020.
Karlsson et al. (2020). Biodiversity Data Journal, 8, e47255.
Yotkham et al. (2021). Insects, 12(1), 45.
Pei et al. (2021). Scientific Reports, 11(1), 1-10.
Bowman & Smith (2021). Insects, 12(9), 770.
Lee, C. F, (2022). ZooKeys, 1125, 171-192.
Hausmann et al. (2022). Scientific Reports, 12(1), 1-9.
Dunn et al. (2023). Ecology, e4036.
Midgley et al. (2023). African Invertebrates, 64(3), 207-220.
Dickinson et al. (2023). Lincoln University Wildlife Management Report, No. 76.
Noll et al. (2023). PeerJ, 11, e16253.
Rydhmer et al. (2024). Ecological Indicators, 158, 111483.
Chen et al. (2024). Journal of Hymenoptera Research, 97, 277-296.