BugDorm-4S2222 Insect Rearing Cage

  • Model:BD4S2222
 
Ordered Quantity 1-5 6-11 12+
 Discount -0% -5% -10%
Price per Unit €41,51 EUR €39,44 EUR €37,36 EUR
  • Out of Stock
     Restock: 30 December 

Formerly BugDorm-42222 (BD42222)

External dimensions of BugDorm-4S2222 insect cage are only L24.5 x W24.5 x H24.5 cm, making it a perfect fit for lab selves with limited space.

The front panel of BugDorm-4S2222 insect rearing cage is of clear plastic for observing insect activity.  Top panel and three side panels are of Polyester netting (96 x 26 mesh) for ventilation.  Centered in the front panel is a sleeve opening (17 cm diameter) for adding or removing insects and for replacing food material.  A thin strip is sewn across the ceiling from which to suspend objects such as feeders.

The framework of lightweight fiberglass makes BugDorm-4S2222 insect cage very easy to assemble.  Simply use connectors to connect poles.  Moving BugDorm-4S2222 will not make it fall apart because the netting is sewn to perfectly match and hold the frame.

Pack Contents
x1 Fabric Cage Body
x12 Fiberglass Rods (Ø4 mm, L22 cm)
x4 ABS Plastic Webbed Joints (3-Way)
x4 ABS Plastic Joints (3-Way)

Studies Using This Line of Products
Ingegno et al. (2011). Biological Control, 58(3), 174-181.
Géneau et al. (2013). Biological Control, 66(1), 16-20.
Rouchet et al. (2014). Evolution, 68(6), 1607-1616.
Renkema et al. (2015). Biological Control, 89, 1-10.
Mains et al. (2015). PLoS Neglected Tropical Diseases, 9(1), e0003406.
Kim et al. (2016). Journal of Agricultural and Food Chemistry, 64(27), 5479-5483.
Mains et al. (2016). Scientific Reports, 6(1), 1-7.
Jang et al. (2017). Pest Management Science, 73(2), 404-409.
Park et al. (2017). Molecules, 22(7), 1050.
Dennis et al. (2017). Evolution, 71(11), 2599-2617.
Shaw et al. (2018). Pest Management Science, 74(6), 1466-1471.
Hertäg et al. (2018). Functional Ecology, 32(4), 1057-1064.
Mains et al. (2019). Journal of Medical Entomology, 56(5), 1296-1303.
Foti et al. (2019). Journal of Pest Science, 92(2), 747-756.
Hafer‐Hahmann & Vorburge (2020). Ecology Letters, 23(8), 1232-1241.
Nicholas & Nordström (2020). Current Biology, 30(14), 2739-2748.
Goelen et al. (2020). Functional Ecology, 34(2), 507-520.
Krzywinska et al. (2021). Current Biology, 31(5), 1084-1091.
Kancharlapalli et al. (2021). PLoS Neglected Tropical Diseases, 15(10), e0009824.
Li et al. (2021). Nature Communications, 12(1), 1-10.
Arran et al. (2021). Scientific Reports, 11(1), 1-10.
Mastronikolos et al. (2022). Insects, 13(2), 179.
Hernández-Triana et al. (2022). Parasites & Vectors, 15(1), 1-8.
Gu et al. (2022). Environmental Microbiology, 24(4), 2119-2135.
Wang et al. (2022). Elife, 11, e81703.
Ross et al. (2023). PLoS Pathogens, 19(1), e1011117.
Kuo et al. (2023). Insect Biochemistry and Molecular Biology, 155, 103932.
Silva Martins et al. (2023). Scientific Reports, 13(1), 6281.
Smidler et al. (2023). Science Advances, 9(27), eade8903.
Hameed et al. (2023). Viruses, 15(8), 1766.
Krzywinska et al. (2023). Current Biology, 33(21), 4697-4703.
Quarrell et al. (2023). Journal of Agricultural and Food Chemistry, 71(43), 16079-16089.
Fouani et al. (2024). Scientific Reports, 14(1), 1198.
Smidler et al. (2024). Scientific Reports, 14(1), 1-11.
Anderson et al. (2024). Nature Communications, 15(1), 729.